
A crash course in version control with git

Hannah Holland-Moritz

February 18, 2020

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 1 / 56



1 Overview

2 Introduction to git

3 git in the command line

4 Break

5 Git in RStudio

6 Extras

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 2 / 56



Overview

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 3 / 56



Resources/Links/Inspiration:

Today’s presentation is heavily inspired by:
1 Sofware Carpentry’s lesson in git

I https://swcarpentry.github.io/git-novice/index.html
2 Max Joseph’s git intro presentation

I https://github.com/mbjoseph/git-intro
3 Visual Git Reference

I http://marklodato.github.io/visual-git-guide/index-en.html
4 git - the simple guide

I https://rogerdudler.github.io/git-guide/
5 Think like (a) Git (good site for advanced beginners - that’s you, after

today!)
I http://think-like-a-git.net/

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 4 / 56

https://swcarpentry.github.io/git-novice/index.html
https://github.com/mbjoseph/git-intro
http://marklodato.github.io/visual-git-guide/index-en.html
https://rogerdudler.github.io/git-guide/
http://think-like-a-git.net/


Today’s Topics

1 Introduction to git
2 Git in the command line

First steps
Setting up repositories
Working in repositories

I The change -> add -> commit cycle
Tracking Changes
Ignoring files with .gitignore
Using Github (and other remotes)
Collaborating
Conflicts

3 Git in RStudio

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 5 / 56



Introduction to git

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 6 / 56



Why should we be using version control?

1 To keep track of changes
I Avoid the mypaper_final_final_reallydonethistime.docx

problem.
2 To document reasons for each change.
3 To preserve multiple versions of documents simultaneously.

I This can be done with “branches”.
4 To collaborate with others and not create conflicting versions of the

same document.

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 7 / 56



What is git doing?

Git keeps track of your changes. It monitors changes as if they were
separate from the document itself.
Each change is a snapshot of the project in it’s current state.

I you get to choose which files are in the picture
I you can compare your picture to collaborators’ pictures and choose to

accept changes you like.
Git commands take the format git verb options

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 8 / 56



git in the command line

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 9 / 56



Setup

Make a new directory
mkdir microbes
cd microbes
nano test.R

Write some short code
x <- rnorm(n = 50, mean = 5, sd = 1)
saveRDS(x, "x.RDS")

To exit nano type:

ctrl+o, enter (this saves the document)

ctrl+x, enter (this closes the editor)

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 10 / 56



Now we’re ready to begin. . .

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 11 / 56



The first time you use git

You will need to tell git who you are so it knows who made the
changes in your documents.
To do this, we set a user name and user email.

git config --global user.name "Mickey Mouse"
git config --global user.email "mickey1234@gmail.com"

Check your configuration with the following command:
git config --list

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 12 / 56



The first time you use git

Optional:

Change core editor to nano from vim

git config --global core.editor "nano -w"

Click here for more config options

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 13 / 56



Setting up a repository

repository: a storage area (usually a directory) where git can store all the
history of a project and information of who changed what and when.

1 Make (initialize) a new repository
cd microbes
git init

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 14 / 56



Setting up a repository

Check the repository was created
git status
ls -a

You’ll see a message about the branch, files that are
committed/uncommitted, the commits, and a list of the files including the
.git file.

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 15 / 56



Working in a repository

The git workflow
1 make changes to file(s)
2 “stage” those file(s)
3 commit the changes

Worksheet time!

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 16 / 56



Working in a repository

Figure 1: “the git workflow”

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 17 / 56



Working in a repository

Now let’s do this ourselves:

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 18 / 56



Working in a repository

Now let’s do this ourselves:

Check on git status
git status

One file - our test.R - file is “untracked”.

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 19 / 56



Working in a repository

Now let’s do this ourselves:

Check on git status
git status

One file - our test.R - file is “untracked”.

Stage the file
git add test.R

Our file is now staged and ready to be committed.

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 20 / 56



Working in a repository
Now let’s do this ourselves:

Check on git status
git status

One file - our test.R - file is “untracked”.

Stage the file
git add test.R

Our file is now staged and ready to be committed.

Commit the changes
git commit test.R -m "created initial test.R file"

We commit (take a snapshot of) the changes
and give a message (-m flag) explaining what the purpose of the
changes was.

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 21 / 56



Working in a repository

An aside about commit messages
like a lab notebook - should be informative
ideally, you should commit often and in small parts. This makes
reverting back easier

Bad messages:
-m "some updates"
-m "fixes bugs"
-m "adds three new sections"

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 22 / 56



Working in a repository

Now it’s your turn:
1 Create a new file called plan_for_world_dominion.txt
2 Write the following line for plan_for_world_dominion.txt

Microbes rule the world.
3 add and commit the file.

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 23 / 56



Tracking changes

How can you figure out the differences between two files?
How do you go back in time, to a previous version of a file(s)?

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 24 / 56



Tracking changes

First. . .

Add some code to our test.R file:
x <- rnorm(n = 50, mean = 5, sd = 1)
saveRDS(x, "x.RDS")
y <- rnorm(n = 50, mean = 1, sd = 1)
saveRDS(y, "y.RDS")

git status

The file is now shown as modified, but not yet staged.

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 25 / 56



Tracking changes

What if we forgot exactly what changed?
git diff # shows line-by-line changes

Fancy versions of git diff

git diff --color-words # shows word-by-word changes
git diff --staged # shows changes when a document is staged

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 26 / 56



Tracking changes: Looking back in time

Looking back in time
git log

The log shows a history of the commits you’ve made. Each is given a
unique identifier that you can use to refer to that point in the history.
For simplicity, git allows you to use the first 7 characters to refer to the
entire identifier.

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 27 / 56



Tracking changes: Going back in time

Everytime you make a commit, git takes a snapshot of all the changes
to your committed files

I Each snapshot is referred to as a HEAD
Your history (git log), is a stack of HEADs
You can navigate between HEADs (i.e. versions) using the git
checkout command

Worksheet time!

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 28 / 56



Tracking changes: Going back in time

Figure 2: “the git workflow”

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 29 / 56



Tracking changes: Going back in time

Going back in time
git checkout HEAD~1 test.R

The ~1 refers to the number of steps backward you want to go.
If you don’t want to count backwards, you can also use the unique
identifier from git log

git checkout fe452Eu test.R

Going back in time
If you go back in time using the git checkout HEAD~1 <file>
command, your file changes will register as modified, as if you just
implemented the changes but have not yet staged or committed them.
You can make changes, and proceed with the changes -> add -> commit
cycle.

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 30 / 56



Tracking changes: Going back in time

Your turn!
1 Use nano to add the following line to the end of test.R

This line is a terrible idea.
2 Add and commit the change (don’t forget to add a commit message!)
3 Use git checkout to undo the change.
4 Replace the line with a better line

# This line is a much better idea
5 Add and commit the change.

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 31 / 56



Tracking changes: Going back in time

WARNING! - the detached HEAD state
git checkout has multiple functions. If you don’t specify a file name after
git checkout, you will go backwards in time, but not be able to commit
any changes that you make. This is known as a detached HEAD state.

To get out of a detached HEAD state without saving any changes
git checkout master

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 32 / 56



Ignoring files

Git allows you to ignore files that you don’t want tracked. Often these files
are very large, temporary, or unnecessary to generate the final product.

Examples of good files to ignore:

RStudio files: .Rproj.user, .Rhistory, *.Rproj, .RData
knitr cache files *_cache/
Sensitive data files

To ignore these files use nano to create a file called .gitignore and add
them in a list.

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 33 / 56



Ignoring files

Example:
[hannah@localhost microbe]$ cat .gitignore
.Rproj.user
.Rhistory
microbes.Rproj
.RData

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 34 / 56



Ignoring files

Your turn!
1 Use nano to create a file called to_do.txt. You don’t need to keep

track of changes in your to-do list so you will add it to your
.gitignore file.

nano to_do.txt

[hannah@localhost microbe]$ cat to_do.txt
* write a plan
* execute plan
* celebrate

2 Use nano to create a file called .gitignore
3 Add to_do.txt to the .gitignore file and then save and exit.
4 Check your git status.

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 35 / 56



Working on branches

Branches allow you to create and test updates without affecting the
working copy.
The default branch is called master
You probably want to create a new branch if:

I You are working on a series of large changes that constitute one update.
I You want multiple working versions of your code (for example, a first

and second draft for a paper)
I You think you might want to easily refer back to that repository state at

some time in the future.

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 36 / 56



Working on branches

The basic branch workflow:
1 Create a new branch
2 Make changes, test, commit those changes.
3 “Merge” the branch with the original copy of your work (the master

branch)

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 37 / 56



Working on branches

To create a branch:
git branch # check what branch you are currently on
git checkout -b <branchname> # the -b creates the branch; checkout moves you to the branch
git branch # see that you have switched to the new branch.

To switch between branches:
git branch # check what branch you are currently on
git checkout <branchname> # checkout moves you to the branch
git branch # see that you have switched to the new branch.

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 38 / 56



Working on branches

Your turn!
1 Create a new branch called development, and switch into it.
2 While on development make a new file called notes.txt; Write a

note to yourself inside the file using nano.
3 Add and commit the changes. Check your git status
4 Type ls
5 Now changes branches back to master, and type ls again. What do

you notice?

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 39 / 56



Working on branches: Merging

Many people dread merging because it often leads to conflicts. Conflicts
happen when git can’t figure out on it’s own how to merge two files.

Merge conflicts usually happen because:
Two or more people make different changes to the same line of the
same file.
One person deletes a file, and another person makes changes to the
same file.

Luckily branches provide a great solution for this! You can test out a merge
before it happens and if all goes well, you can run the merge for real.

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 40 / 56



Working on branches: Merging

The Scout Pattern - this method attributable to think-like-a-git.net
1 Move to the master branch (or whatever branch you want to merge

with)
git checkout master

2 Create a new branch to test the merge and switch to it.
git checkout -b test_merge

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 41 / 56



Working on branches: Merging

The Scout Pattern - Continued
3 merge your development branch into test_merge

git merge development

a. If there is a conflict, you can try to resolve it by editing the files by
hand, or abort the merge with the command

git reset --hard

b. If there is no conflict, the merge will happen automatically.

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 42 / 56



Working on branches: Merging

The Scout Pattern - Continued
4 If you are happy with your merge, you can now merge test_merge into

master.
git checkout master
git merge test_merge

If you are unhappy with the merge, move back to master and delete the
test_merge branch.
git checkout master
git branch -D test_merge

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 43 / 56



Working on branches: Merging

The Scout Pattern - Your turn!
Use the Scout pattern to merge changes from development into the master
branch.

1 Move to the master branch and verify that everything is up to date.
2 Create and move into a new branch called test_merge. Hint: git

checkout -b <branch name> creates a branch
3 Merge development into test_merge.
4 Move back to the master branch and merge the test_merge branch

into it.

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 44 / 56



Break

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 45 / 56



Using Github (and other “remotes”)

remote: a repository that is not on your local computer. Remotes can be
on any number of places, including websites like GitHub or Bitbucket, and
on remote servers, such as microbe/proteus.

Useful if you want a master copy that everyone draws from and
contributes to.

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 46 / 56



Create and connect to a remote

Now we will all create a remote repository on github for our microbes file.
1 Create the empty repository on github

important to prevent merge conflicts!:
I do not create a readme
I do not create a .gitignore

2 Let git know that a remote called origin exists; and tell it where to
find it on the internet

git remote add origin https://github.com/hhollandmoritz/microbes.git

3 Add all changes and files that are not in .gitignore to the remote
repository.

git push -u origin master

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 47 / 56



Create and connect to a remote
4 Anytime you make changes, you can now git push them to the

repository online.

What are origin and master????
“origin” refers to the remote repository; technically you can call it
anything, but most git documentation uses this convention so for
clarity we will too.

I “origin” is confusing because often you are making changes locally and
then moving them to the remote repository rather than the other way
around - unless you are collaborating.

master refers to the branch

Cardinal Rule: Always pull before you push
This helps prevent merge conflicts! (It’s similar to creating a test_merge
branch).

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 48 / 56



Connect to an already-existing remote:

https://github.com/hhollandmoritz/collaboration_practice
1 Clone (copy) the repository and all of its history onto your local

computer.
git clone https://github.com/hhollandmoritz/collaboration_practice.git

2 Make some changes, add, and commit them.
3 pull any new changes down from the remote repository first. Push your

changes up to the repository.

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 49 / 56

https://github.com/hhollandmoritz/collaboration_practice


Collaborating

https://github.com/hhollandmoritz/collaboration_practice

Your turn!
1 Clone the collaboration_practice repository.
2 Use nano to create a text file with your name, and write your favorite

food in the text file.
nano hannah.txt
cat hannah.txt
>chocolate

2 Add and commit your file.
3 Pull any changes from the remote repository first.
4 Push your changes to the repository.

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 50 / 56

https://github.com/hhollandmoritz/collaboration_practice


Collaborating: Branches

One great way to collaborate, is to create branches with your changes. This
helps avoid conflicts.

The workflow:
1 Create a new branch to hold your chages and switch to it.

git checkout -b harry_potter

2 Make changes, add, and commit them.
3 push your branch to the remote repository

git push -u origin harry_potter

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 51 / 56



Collaborating: Branches

Once you push a branch to github, you can create a pull-request on github,
and merge the branches online, rather than using the command line.

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 52 / 56



Collaborating: Branches

Your turn!
1 Create a branch with the name of your favorite fictional character.
2 Use nano to create a text file with the character’s name, and write

their favorite food in the text file.
nano harry_potter.txt
cat harry_potter.txt
>treacle tart

2 Add and commit your file.
3 Push your branch to the repository.
4 We will merge the branches as a group.

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 53 / 56



Git in RStudio

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 54 / 56



Extras

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 55 / 56



Changing editors

For more editor options see
https://swcarpentry.github.io/git-novice/02-setup/index.html)

Hannah Holland-Moritz A crash course in version control with git February 18, 2020 56 / 56

https://swcarpentry.github.io/git-novice/02-setup/index.html

	Overview
	Introduction to git
	git in the command line
	Break
	Git in RStudio
	Extras

